DragonVale Wiki
Advertisement
DragonVale Wiki

You know the combonations for the Emerald Dragon through the Topaz Dragon. But what about all the others? This blog is for those gemstone dragons that we don't know yet. I'll have reward badges as the time passes.

Dragons[]

Turquoise Dragon

Heres some info on turquoises for help on guessing.

Turquoise is an opaque, blue-to-green mineral that is a hydrous phosphate of copper and aluminium, with the chemical formulaCuAl6(PO4)4(OH)8·4H2O. It is rare and valuable in finer grades and has been prized as a gem and ornamental stone for thousands of years owing to its unique hue. In recent times, turquoise, like most other opaque gems, has been devalued by the introduction of treatments, imitations, and synthetics onto the market.

Badge has been uploaded!

Turqouise Badge


Garnet Dragon

Heres some info on the garnet to help with your guesses.

Garnets are nesosilicates having the general formula X3Y2(Si O4)3. The X site is usually occupied by divalent cations (Ca2+, Mg2+, Fe2+) and the Y site by trivalent cations (Al3+, Fe3+, Cr3+) in an octahedral/tetrahedral framework with [SiO4]4− occupying the tetrahedra. Garnets are most often found in the dodecahedral crystal habit, but are also commonly found in the trapezohedron habit. (Note: the word "trapezohedron" as used here and in most mineral texts refers to the shape called a Deltoidal icositetrahedron in solid geometry.) They crystallize in the cubic system, having three axes that are all of equal length and perpendicular to each other. Garnets do not show cleavage, so when they fracture under stress, sharp irregular pieces are formed.

Badge goes here.


Amethyst Dragon

Info is here.

Amethyst is a purple variety of quartz (SiO2) and owes its violet color to irradiation, iron impurities (in some cases in conjunction with transition element impurities), and the presence of trace elements, which result in complex crystal lattice substitutions. The hardness of the mineral is the same as quartz, thus it is suitable for use in jewelry.

Badge goes here.


Aquamarine Dragon

Info is here.

Aquamarine (from Latin: aqua marina, "water of the sea") is a blue or turquoise variety of beryl. It occurs at most localities which yield ordinary beryl. The gem-gravel placer deposits of Sri Lanka contain aquamarine. Clear yellow beryl, such as that occurring in Brazil, is sometimes called aquamarine chrysolite. The deep blue version of aquamarine is calledmaxixe. Maxixe is commonly found in the country of Madagascar. Its color fades to white when exposed to sunlight or is subjected to heat treatment, though the color returns with irradiation.

The pale blue color of aquamarine is attributed to Fe2+. The Fe3+ ions produce golden-yellow color, and when both Fe2+ and Fe3+ are present, the color is a darker blue as in maxixe. Decoloration of maxixe by light or heat thus may be due to the charge transfer Fe3+ and Fe2+. Dark-blue maxixe color can be produced in green, pink or yellow beryl by irradiating it with high-energy particles (gamma rays, neutrons or even X-rays).

Badge goes here.


Diamond Dragon

Info is here.

A diamond is a transparent crystal of tetrahedrally bonded carbon atoms in a covalent network lattice (sp3) that crystallizes into the diamond lattice which is a variation of the face centered cubic structure. Diamonds have been adapted for many uses because of the material's exceptional physical characteristics. Most notable are its extreme hardness and thermal conductivity (900–2,320 W·m−1·K−1), as well as widebandgap and high optical dispersion. Above 1,700 °C (1,973 K / 3,583 °F) in vacuum or oxygen-free atmosphere, diamond converts to graphite; in air, transformation starts at ~700 °C. Diamond's ignition point is 720 - 800 °C in oxygen and 850 - 1,000 °C in air. Naturally occurring diamonds have a density ranging from 3.15–3.53 g/cm3, with pure diamond close to 3.52 g/cm3. The chemical bonds that hold the carbon atoms in diamonds together are weaker than those in graphite. In diamonds, the bonds form an inflexible three-dimensional lattice, whereas in graphite, the atoms are tightly bonded into sheets, which can slide easily over one another, making the overall structure weaker.

Badge goes here.


Winners[]

All of the winners will get a badge and in honorable mention on this blog.

Rules[]

Your maximum amount of guesses is 4 per dragon. Anymore then 4 guesses will recieve disqualification from this blog. Please put all answers in the comments!

Advertisement